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Abstract-The deformation of a cylindrical cell of elastic-plastic material containing an initially spherical
void has been investigated in order to discuss the relative importance of the controlling mechanical and
geometrical micro-parameters, If, as in this investigation. both strain hardening and strain softening occur in
the matrix there are rour main mechanical parameters. Two geometrical parameters complete the set of
control variables, The individual influence of each or these variables and their interaction produce different
overall responses or the cell, and this makes it possible to use macro-experimental data to calibrate the
theoretical model.

INTRODUCTION

There is considerable experimental evidence (see, e.g. the work of Hancock and Mackenzie[l]
and Lautridou and Pineau[2]) to suggest that, in steels at least, the macroscopic behaviour of
the material at high plastic strain or triaxial stress is influenced by the generation of second
order holes other than those associated with the largest particles or inclusion in the material. As
an element of material is subjected to increasing strain and stress, voids initiate and grow
around the large MnS particles. The growth of these voids and the effect of the growth on the
behaviour of the element as a whole has occupied the attention of most workers on the ductile
failure of materials. However, there are smaller objects (the fine carbides and other pre­
cipitates) that form the nucleation sites of finer voids, the nucleation taking place if the strain
and/or the triaxial stress is large enough. The growth of these fine voids will soften the matrix
of the cell in exactly the same way as the cell itself is softened by the growth of the larger voids
associated with the MnS particles. This softening of the matrix accelerates the growth of the
main voids and lowers the stress and strain at which the initiation of fracture is predicted by
any model of their growth and coalescence.

We have alr~ady presented [3) a detailed discussion of theoretical analyses of void growth in
ductile materials, and the interested reader may refer to that paper. However, in setting the
perspective for the work reported here it is useful to point out that most authors have chosen to
discuss one or the other of the following three alternatives; plane strain or axisymmetric
deformation, perfectly plastic or plastically hardening material, and a simplified or detailed
account of the interaction enforced by the containing material on the boundary of the cell.

We have decided that an axisymmetric cell is particularly versatile for the study of the effects
of void growth within general patterns of continuum deformation, that it is important to
compute with definite hardening characteristics (and our results are for a material that hardens
in such a way that it correctly simulates the necking behaviour of A533B nuclear pressure
vessel steel in a simple unixial test), and that the study of the whole range of possible
interactions with the containing medium is vital to the application of our results to various real
ductile fractures.

tName in Chinese phonetic spelling with surname first. The work on which this paper is based was completed whilst the
first named author was visiting the Department of Mechanical Engineering, Sheffield University, England.
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Within this framework our efforts have been directed towards evaluating the effects of the
microstructural parameters that affect the straining and instability of the model cell. This has
been achieved by performing a large number of computations that develop the relationships
between the macroscopic response of the cell and the micro-parameters that control it. Of
course, some advance towards this goal has already been made by other workers in this field,
but it is almost impossible to discuss the effect we seek in that work because of the differences
in modelling that we have already alluded to. Our work is an attempt at a truly systemmatic
analysis of the problem.

THE COMPUTATIONAL MODEL

We have investigated the response of a voiding elastic-plastic continuum by studying the
deformation of a cylindrical cell of matrix material which contains an initially spherical void. A
quadrant of the cell is shown in Fig. I. The deformation of the cell was analysed by subdividing
it into 456 constant strain triangular finite elements with 260 nodes, and the large strains
involved were computed by the up-dated Lagrangian formulation as set out by McMeeking and
Rice[4].

Our intention was to investigate the quantities associated with the overall, or macroscopic
response of the cell, the fields of stress and deformation within the cell and the mechanical
geometrical parameters that control them. We shall, where appropriate, use the prefix "macro"
to denote the response of the cell as a whole and "micro" to denote the variable fields within
the cell.

The value of the macroscopic axial true stress (J"z is found by adding the nodal forces along
the top horizontal surface and dividing the result by the current area of the top of the cell. The
corresponding radial stress (J", is found in an analogous way. At the beginning of each increment
of loading the boundaries of the cell are moved to the position indicated by the displacement
computed during the previous increment. Macroscopic strains are

Z= In (I + tiLo!Lo)

;: = In (I - tiRo!Ro). (I)

We regulate the change of shape of the cell through the value of the constant 0' which relates
the current values of the macro-strain rates by

. . (R L)E, = -O'E: i.e. Ii = -0' I . (2)

This integrates to

(3)
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Fig. I. A quadrant of the axisymmetric unit cell lIsed to model the grc1wth \If a \aid
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which is the condition of macro-proportional straining. It should yield

6Ro t (- )R
o

= -exp -O'E, •
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(4)

Deviation from proportional straining would occur if the loading displacement increments were
too big. Small increments of loading are therefore desirable.

Different overall dilatations of the cell can be simulated by changing the value of a. The
following macro-parameters will be used to discuss the behaviour of the cell.

ae = az - a, is the equivalent stress

- 2- - 2 -
Ee =3(E, - E,) =3(t +a )Ez is the equivalent strain

alii = (az +2a,)/3 is the mean stress

EIII = (2€, +;:)/3 = (t - 20');:/3 is the mean strain

~ is a nomalized void growth parameter, where tv is the current void volume.
WEe

current void volume.
We assume that softening begins in the matrix when

(5)

where ii, is the yield stress of the material, acy and A. are two material constants and am and a.
are the mean stress and equivalent stress in the matrix. (This criterion has the same functional
form as that proposed by Lautridou and Pineau[2] for the nucleation of voids, but our material
constants will be different from theirs unless the nucleation of the voids and the softening due
to their growth are close together.) In the computations the normalized elongation 6LolLo is
taken to be the generalized time t. The tangent modulus used in the Prandtl-Reuss flow theory is
defined as t

E = ~a./., ~t E.

where ~a./~t is the Jaumann derivative of the equivalent stress, and the rate of equivalent
strain is

. 2 ( . .) 2 (1 ) .
E. =3 Ez - E, =:3 +a Ez

We characterize the hardening of the cell by the macroscopic tangent modulus

the actual values used in the computations being given in Table 1, and define the parameters

PI = E,/E, and e, = E/(-E,)

(-E,) is the (negative) softening modulus of the matrix material which replaces HI when
condition (5) is satisfied.; Four material parameters, acy, A., P, anqe, have now been identified.

tThe difference between total strain and plastic strain is neglected in this definition.
Hhe assumption of a constant. negative tangent modulus when the softening point of the matrix has heen reached is

the simplest way of dealing with the phenomenon. There are, of course, more detailed approaches available. in particular
those based on the models of Gurson[51. For comparison. Tvergaard[61. using Gurson's model. requires three parameters
to characterize the softening of the material. The discussion of effects of the detailed characteristics of the softening of the
matrix on the response of the cell is reserved for a future study.
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Table 1. The variation of the tangent modulus £, with the strain £,. £ = 207 GPa, jj = 0.29 and IT, = 458 MPa
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complete the mechanical and geometrical specification of the cell.
When the overall axial stress iiz reaches a peak and begins to drop, the cell is understood to

have reached its point of instability.
This definition of the failure of the cell was also used by Rousselier[7]. It may, however, be

preceded by the development of a shear band, or, as predicted by Tvergaard [8], be followed by
it. In either case the macroscopic stress at which the instability point of the cell and the
formation of a shear band occur are close.

The computations were performed so that the macroscopic tangent modulus E1 agreed with
that simulated by Li[9] for the tensile deformation of A533B steel. The computational method
was described in detail by Li and Howard [3].

THE MECHANICAL PARAMETERS OF THE MATRIX

The overall stress-strain curves of the cell, its instability point and the value of the void
growth parameter at the instability point vary with the values chosen for the mechanical
parameters of the matrix.

Figure 2 shows the effects of (Icy and {3t on. the stress-strain curves with A" ef' fo and p kept
constant. Different values of (ICY significantly influence the peak values of the equivalent stress
iie and the mean stress iim' The slopes of the stress-strain curves are mainly affected by the
values of {3t. On the other hand, lowering (Iev has the effect of increasing the void growth
parameter and simultaneously decreasing the triaxiality parameter at instability as shown by the
data represented by solid triangles and squares in Figs. 3 and 4. Comparing the blank triangular
data with those of the solid squares, we can see that the hardening ratio {3t has the effect of
lowering the slope of the void growth parameter curve in Fig. 3, whilst raising the slope of the
triaxiality curve in Fig. 4.

The effects of changing Ae are shown in Fig. 5 where (Ie," {3/o ef' fo and p are kept constant.
The value of Ae has a strong influence on the maximum value of (Ie but its effect on the mean
stress-strain curve is slight. A comparison of Fig. 2 in which Ef = -100 with Fig. 5 in which
ef = -50 shows that the effect of Ef on the hardening of the cell is almost imperceptible whilst
the slope of the softening part of the curves varies directly with ef' as one might have expected.
Further information on the effects of changes in Ae can be obtained from an examination of the
data represented by blank squares and inverted blank triangles in Figs. 3 and 4. Variation of Ae

has no significant influence on the void growth rate locus at instability and it affects the
triaxiality condition only in the lower triaxiality range (iim/a-e~ 2). However, a comparison of
the data represented by blank and solid squares shows that the softening parameter Ef

significantly influences both of these relationships; an increase of the absolute value of ef
lessens the void growth parameter at instability (Fig. 3) and strengthens the triaxiality (Fig. 4).

The triaxiality of the cell is controlled by the value of a. However, in many applications it is
the value of the stress triaxiality a-m/a-e that is of direct interest as a control variable on the
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Fig. 2. The effect of uc , and 13, on the stress-strain curves. (A, = 1.67. ef =-100, ro =0.2, p = I).
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Fig. 3. The void growth parameter w/wi, vs the normalized mean stress iTm/iT, at the instability point for various
mechanical parameters of the cell (ro = 0.2, p = I).

behaviour of the cell, and the relationship between this and a may be of interest to those who
wish to use our results. The relationship we seek may be read from Figs. 3 and 4 when one adds
to those the fact that the data are computed for a values of 0.2, 0.4, 0.46 and 0.49, a = 0.2
corresponding to the highest triaxiality. It is immediately apparent that, except for the lowest
degree of triaxiality, the relationship between iimlii. and a is sensitive to the value of O'ey. The
general trend is clear though, in that the triaxiality increases as a decreases,. but the spread in
iimlii. due to different values of O'cy, ,\.. PI and ef increases with triaxiality. Figure 4 shows that
a = 0.2 produces levels of hydrostatic tension that are consistent with what is believed to occur
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Fig. 4. The triaxiality parameter am/a, vs the equivalent strain £, (at the instability point) for various mechanical
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Fig. 5. The effects of A, on the stress-strain curves (a". ~ 4, {3, ~ I. ef -50.'0 ~ n.2. p ~ I).

near crack tips, (computed values [10] for the maximum stress nea~ a crack tip in a material with
a hardening index between 0.1 and 0.2 are between 3 and 4 times G'y as is the data of Fig, 4
when a = 0.2) whilst the data at high a levels would correspond to the behaviour in necking
bars. This observation points to the importance of microstructural parameters in characterizing
the highly triaxial events close to crack tips, and illustrates the potential dangers of using data
collected on plain tensile specimens to predict the behaviour of ductile cracks.
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THE GEOMETRICAL PARAMETERS OF THE MODEL CELL

One might expect that enlarging the initial size of the void would soften the response of the cell
and this has been demonstrated previously in Figs. 10 and Ilof Li and Howard [3]. The effect is
shown again in Fig. 6(a) of this paper in the bodily drop of the whole curve for the case At = 1.67,
with the resulting halving of ·the strain to instability as To is doubled with a wide range of At"

Also shown in Fig. 6(a) by the data on the broken lines is the result of changing At whilst
keeping everything else fixed. The hardening part of the curve is unaffected, but there is a
dramatic change in the softening part and the instability point over the range of At for which
computations have been made. Figures 7 and 8 show (amongst other things) how the void
growth parameter at instability and the triaxiality state are affected by a change in To. The data
represented by the thin solid line and the broken line show that there is a large drop in the
triaxialty curve as To is doubled and, for the same value of U m' the instability void growth
parameter increases (due to the decrease of ductility) at instability.

The results of varying the values of p are also shown in Figs. ~8. There is little change of
any of the parameters.

DISCUSSION

We have studied the sensitivity of the overall mechanical response and the pattern of void
growth in the cell to the micro-mechanical parameters u cy, At, f3r and ef of the matrix and the
geometrical parameters To and p. The main effects of increasing each of these six parameters are
summarized in Table 2.

Within the range of values chosen for the computations the influence of the initial
length-radius ratio p can be neglected. The effect of increasing To is, in many respects, similar to
that of decreasing U cy, a fact that may make U cy a particularly useful parameter in simulating
ductile failure. Table 2 shows that At measures the influence of the equivalent stress a•.
Furthermore, it can adjust the ratio between the overall axial stress az and the overall radial
stress an since it strongly affects the peak value of a. whilst it has only moderate influence on
am' When am/a. < 2 it can be used to adjust the curvature of the amla. - €. relationship of Fig.
4.
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Fig. 6. The effects of '0 and p on the stress-strain curves (O'ey =4, (3, =1, ef =-50).



1096 LI Guo CHEN and I. C. HOWARD

~Q2l

80 - ~~
R>=o.4~-

40

I
I

o I

J/
Fig. 7. The void growth parameter w/wE, vs the normalized mean stress urn/u, (at the instability point) for various

geometrical parameters of the cell «(Tcy =4, A, = 1.67, (3, = 1).

2

1 -

OP=o.8} ro=O.2

t>p=1.2 q=-SO

rO::Qj

-- ~.:._..1.

1

.
00

[
".a :

,

Fig. 8. The triaxiality parameter urn/u, vs the equivalent strain i, (at the instability point) for various geometrical
parameters of the cell «(Tcy = 4, A, = 1.67, (3, = 1).

The observations suggest that the choice ofvalues for the four mechanical parameters (J"t"

Ae, (3" ef is of the most importance for correctly simulating the continuum response of this void
model. The influence of '0 overlaps that of (J"cy in many respects especially for high strength
steels. The effects of p are negligible.

All this points to the possibility of simulating the parameters of the void model by making
use of the experimental data of necking and notched bars. The determination of (J"cy depends on
the fact that the continuum softening point should be somewhere near the point of void
coalescence or the beginning of stable crack growth. The experimental techniques needed for
testing void nucleation and void coalescence have been resolved by the Beremin group[ll] and
Hancock et al. [1,12]. The values of (3, and ef' which are related to the continuum tangent
modulus Er , can be determined by computer simulation of a necking bar[9, 13]. This is
accomplished by adjusting the stress-strain response of the material until the computed
response of the bar agrees with the experimental data. A series of notched bar tests[l, 2] gives
the locus between the triaxiality parameter am/a, and the equivalent strain E, at the initiation of
failure. The relationship of am/a, - E, helps to select an appropriate value for Ae• Finally, the
value of '0 can be chosen from the fact that a change in it moves the overall equivalent
stress-strain curve bodily up or down.
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Table 2. The effects of increasing the values of the characterizing parameters on various relationships
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Of course, some "trial and error" tests have to be performed at various stages of any
complete simulation. A stringent test of a simulation would then be a comparison between the
computed result and the information obtained from metallographic examination of the material.

Even so, any computed result is still approximate because the computer simulations of
necking bars have only been done with the assumption of plastic incompressibility; the
dilational effect in plasticity has not yet been taken into account. This inaccuracy will be
lessened, if not eliminated, once the dilatational response predicted by the calibrated cell is
incorporated into the constitutive equations of the continuum that represents the material in the
necking bar. The implementation of the ideas outlined above are underway and will form the
subject of a further paper.

Some connection with experimental observations can be made by comparing our Figs. 4 and
8 with Fig. 3 of Lautridou and Pineau[2]. Their work was on A508 steel at 100°C and the
similarity between that material and the AF33B approximately simulated here should be enough
for a sensible comparison to be made. They used four steels, designated A, B, C and D, tested
variously in the long (L), transverse (T) and short (5) rolling directions. The effects of this were

Table 3. The parametric dependence of the relationship ii/a = 'Y~, exp d(;",/(;,) at the point of instability

a ro i/a £ ;; /0 y
e m e

<~

0.10 0.083 0.0042 6.0 0.0023

0.40 0.20 0.051 0.0069 3.3 0.048

0.40 0.010 0.0070 1.0 0.32

0.10 0.068 0.0066 6.0 0.0012

0.45 0.20 0.051 0.014 2.9 0.047

0.40 0.0054 0.0072 0.56 0.33



1098 1.1 Guo CHEN and l. C. HOWARD

mainly to sample different sizes and projected shapes of the inclusions, which were either
ellipsoidal (A and D) or disc shaped (B and C). Steel A was tested in the Land S orientations,
the S orientation producing data that lie within the lower part of the curves of our Fig. 4. Their
data for steel A in the L orientation are, however, somewhat above our curves. Figures 4 and 8
and Table 2 show that an eleyation of the ductility curve is associated with increasing an or 1e!1
or a decrease in roo It is likely that ro is the controlling parameter as an and letl are associated
only with the properties of the matrix. If this so, the effective value of ro is related to the
average diameter of the inclusion perpendicular to the axis of the test, the diameter in the L
orientation being smaller than that in the S orientation and results supporting this view have
been obtained on a study[l4] of the effect of void shape on growth. Figure 8 now shows how
the ductility curve is projected bodily upwards as ro decreases, as the experiments suggest. This
effect of orientation appears to be more significant than that of volume alone, for steel A had
bigger particles than steel D with about twice the volume fraction of inclusions but the ductility
curves for these two materials in the L orientation are virtually indistinguishable. The effect is
also shown in the work of Hancock and Mackenzie[I] who present qualitatively similar data on
orientation effects in Ql and HY130 steels.

The role of triaxiality in promoting void growth is often expressed through a relationship of
the form[15, 16J

(6)

Table 3 (mainly taken from data published elsewhere[3J and reproduced here in Fig. 3) shows
how this relationship at the point of instability is affected by changes in some of the control
parameters. The most striking feature is the extremely rapid growth of the pre-exponential term
'Y with ro, a prediction that agrees qualitatively with experimental observation. However, the
variation predicted here seems to be much larger than that in the experiments (l7J. This may
have something to do with the non-spherical shape of many particles in real materials, but this
disparity will probably not be resolved until a programme of simultaneous testing and computer
simulation has taken place.
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